Ontologies for Software Engineering and Software Technology
Preface

Overview

Two important challenges facing current communities of researchers and practitioners in the field of software engineering and technology (SET) are knowledge integration and computer-based automatic support. The first challenge implies wasting a lot of time and effort and this is due to one of the difficulties in human relationships, namely the lack of explicit knowledge shared among members of a group/project, with other groups and with other stakeholders. The second challenge arises because many projects include the design/construction of advanced tools for supporting different software engineering activities. These tools should provide as much functionality as possible with the smallest cost of development.

Both challenges can be better and more easily approached by using ontologies. In this book, we will mainly deal with two of the multiple applications of ontologies in software engineering and technology that have been identified in the literature: (1) sharing knowledge of the problem domain and using a common terminology among all the interested people (not just researchers); and (2) filtering the knowledge when defining models and metamodels.

The utility of the first application is obvious. However, it is important and convenient to pay it opportune attention. Communication is one of the main activities (regarding duration and impact) in software projects. It is proven that participants in projects have a different knowledge of the problem domain and/or use different languages. The ambiguity of the natural language implies mistakes and nonproductive efforts. Ontologies can mitigate these problems and, farther, some authors have intended to use ontologies as back-bone of software tools and environments.

The second application is focused on the filtering of knowledge of a given domain. Models and metamodels are abstract representations of reality and, by definition, they only include a part of the reality they are aimed at modeling, obviating the unwanted characteristics. In this sense, ontologies can also help us decide what must be extracted from the real systems
to build models or what must be taken into account when defining metamodels.

So, this book should not be considered as a book written by ontology experts for ontology experts, but one written by people who use the ontologies mainly for the two applications mentioned above. For that reason, this book is oriented to researchers and practitioners in SET and includes the advanced trends in the use of ontologies within software projects and software engineering research. It also deals with two main challenges the SET discipline: (1) knowledge integration and (2) design of more powerful and generic tools.

Organization

The book is composed of eleven chapters structured into three parts: an introductory part; a part composed of ontologies that conceptualize a SET domain or subdomain; and a part where some proposals on the use of ontologies as software artifacts in some software processes and technologies are described.

The last introductory part comprises two chapters. The first one, written by Oscar Corcho, Mariano Fernández-López and Asunción Gómez-Pérez, will introduce the ontologies’ concepts and the main aspects related to ontological engineering. The second chapter (by Francisco Ruiz and José R. Hilera) will deal with the state of the art of the use of ontologies in SET. Also, this chapter defines a taxonomy for classifying the uses of ontologies in SET, together with the result of the classification into this taxonomy of about 50 ontologies (including the proposals of this book).

The second part is made up of five chapters. Chapter 3 will present the engineering of the ontology for the Software Engineering Body of Knowledge, written by Alain Abran, Juan-José Cuadrado, Elena García-Barriocanal, Olavo Mendes, Salvador Sánchez-Alonso and Miguel-Angel Sicilia. An ontology for software development methodologies and endeavours will be presented by Cesar Gonzalez-Perez and Brian Henderson-Sellers in Chap. 4. Chapter 5 presents a software maintenance ontology developed by Nicolas Anquetil, Káthia M. de Oliveira and Márcio G.B. Dias, and an ontology for software measurement by Manuel F. Bertoa, Antonio Vallecillo and Félix García is the topic of Chap. 6. An ontological approach to the SQL:2003 developed by Coral Calero and Mario Piattini will be explained in Chap. 7, closing this second part.

The final part begins with the Object Management Group Ontology Definition Metamodel (Chap. 8), developed by Robert Colomb, Kerry Raymond, Lewis Hart, Patrick Emery, Chris Welty, Guo Tong Xie and Elisa Kendall. Chapter 9, written by Uwe Assmann, Steffen Zschaler and
Gerd Wagner, deals with ontologies, metamodels and the model-driven paradigm. Chapter 10 will presents the use of ontologies in software development environments in the work of Káthia Marçal de Oliveira, Karina Villela, Ana Regina Rocha and Guilherme Horta Travassos. Finally, the topic of the last chapter of the book (Chap. 11) is a semantic upgrade and publication of legacy data by Jesús Barrasa Rodríguez.

As a complement to this book, the Alarcos Group (the research group of the editors) have created a web site (http://alarcos.inf-cr.uclm.es/ontoset) to store and share, in an open way and by using standardized formats, examples of interesting ontologies in the SET discipline. In addition to the examples referred to in the book, other examples of ontologies elaborated by the international community will be included in this web site.

Audience

The audience for this book is software engineering researchers and practitioners (professors, PhD and postgraduate students, industrial R&D departments, etc.). The reader is assumed to have previous knowledge of software engineering.

Acknowledgements

We would like to express our gratitude to all those individuals and parties who helped us produce this volume. In the first place, we would like to thank all the contributing authors and reviewers who helped improve the final version. Special thanks to Springer-Verlag and Ralf Gerstner, for believing in our project and for giving us the opportunity to publish this book. We would also like to thank José Carlos Villar Herrera and Tomás Martínez Ruíz of UCLM for their support during the development of this book.

Finally, we would like to acknowledge the public organizations that financed this work, under the research projects CALIPO (TIC2003-07804-C05-03) and ENIGMAS (PBI-05-058).

Coral Calero
Francisco Ruiz
Mario Piattini

July 2006
Contents

1. Ontological Engineering: Principles, Methods, Tools and Languages .................................................................1
   1.1 Introduction ..................................................................................................................................................1
   1.2 What Is an Ontology? Viewpoints from a Philosopher and from an Ontology Engineer ....................................3
   1.3 What Are the Main Components of an Ontology? ..................................................................................5
   1.4 Ontological Engineering .......................................................................................................................6
   1.5 Principles for the Design of Ontologies ...............................................................................................8
   1.6 Ontology Development Process and Life Cycle ...................................................................................9
   1.7 Methods, Methodologies, Tools and Languages ..................................................................................16
      1.7.1 Methods, Methodologies and Tools Used for the Whole Ontology Development Life Cycle ...............16
      1.7.2 Ontology Learning ..........................................................................................................................22
      1.7.3 Ontology Alignment and Merging ..................................................................................................25
      1.7.4 Ontology Evolution and Versioning ...............................................................................................31
      1.7.5 Ontology Evaluation ....................................................................................................................32
      1.7.6 Ontology Implementation .............................................................................................................34
   1.8 Conclusions .............................................................................................................................................38
   1.9 Acknowledgements ...............................................................................................................................39
   References ..................................................................................................................................................39

2. Using Ontologies in Software Engineering and Technology ..........................................................49
   2.1 Introduction ............................................................................................................................................49
   2.2 Kinds of Ontologies ...............................................................................................................................50
      2.2.1 Heavyweight Versus Lightweight Ontologies ..................................................................................56
   2.3 A Review of the Uses in SET ..............................................................................................................57
      2.3.1 Ontology Versus Conceptual Model ...............................................................................................63
      2.3.2 Ontology Versus Metamodel ..........................................................................................................64
      2.3.3 Ontologies in Software Engineering Environments ..........................................................................65
      2.3.4 Representing Ontologies Using Software Engineering Techniques ..................................................67
      2.3.5 Experiences and Lessons Learned in Software Engineering Research ..............................................69

References ..................................................................................................................................................39
X Contents

2.4 A Proposal of Taxonomy................................................................. 73
   2.4.1 Ontologies of Domain ............................................................. 74
   2.4.2 Ontologies as Software Artifacts............................................. 76
2.5 Review and Classification of Proposals in the Literature.............. 79
   2.5.1 Proposals of Ontologies of Domain......................................... 79
   2.5.2 Proposals of Ontologies as Software Artifacts ....................... 86
References ........................................................................................... 95

3. Engineering the Ontology for the SWEBOK: Issues and Techniques.............................................................................................. 103
   3.1 Introduction ................................................................................ 103
   3.2 History and Principles of the SWEBOK Project ......................... 105
      3.2.1 Hierarchical Organization..................................................... 107
      3.2.2 Reference Material and Matrix............................................ 108
      3.2.3 Depth of Treatment............................................................ 108
   3.3 The Ontology of the SWEBOK from a Conceptual and Consensus-Reaching Perspective................................................................. 109
   3.4 The Ontology of the SWEBOK as a Formal Artifact...............112
   3.5 Fundamental Elements of the Ontology of the SWEBOK ..........114
      3.5.1 Activities, Artifacts and Agents............................................ 114
      3.5.2 Models, Specifications and Methods.................................... 116
      3.5.3 Theoretical Standpoints and Guidelines............................... 117
   3.6 Conclusions ............................................................................. 119
References .......................................................................................... 120

4. An Ontology for Software Development Methodologies and Endeavours............................................................................................. 123
   4.1 Introduction .............................................................................. 123
   4.2 Ontology Architecture .............................................................. 125
      4.2.1 The Communities Involved ................................................ 125
      4.2.2 Usage and Ontology Domains............................................. 127
      4.2.3 Product and Process........................................................... 131
   4.3 Endeavour-Related Concepts.................................................... 133
      4.3.1 High-Level View ............................................................... 134
      4.3.2 The Process Side ............................................................... 135
      4.3.3 The Product Side ............................................................... 137
      4.3.4 The Producer Side ............................................................ 140
      4.3.5 Endeavour-Related Concepts: Conclusion ......................... 141
   4.4 Method-Related Concepts ....................................................... 142
      4.4.1 Templates and Resources ................................................... 142
      4.4.2 Duality in the Method Domain.......................................... 143
      4.4.3 Applying the Methodology............................................... 148
5. Software Maintenance Ontology .................................................153
   5.1 Introduction ...........................................................................153
   5.2 Software Maintenance .........................................................154
   5.3 An Ontology for Software Maintenance ...............................156
       5.3.1 Overview of the Ontology.............................................157
       5.3.2 The System Sub-ontology .............................................158
       5.3.3 The Computer Science Skills Sub-ontology .....................160
       5.3.4 The Maintenance Process Sub-ontology .........................162
       5.3.5 The Organizational Structure Sub-ontology .....................165
       5.3.6 The Application Domain Sub-ontology .............................166
   5.4. Validating the Ontology ......................................................166
       5.4.1 Quality Validation ......................................................167
       5.4.2 Relevance Validation .................................................168
   5.5 Putting the Maintenance Ontology to Work ..........................169
   5.6 Conclusion ...........................................................................171
   References ..................................................................................172

6. An Ontology for Software Measurement ........................................175
   6.1 Introduction ...........................................................................175
   6.2 Previous Analysis ..................................................................177
   6.3 A Running Example .............................................................178
   6.4 The Proposal of Software Measurement Ontology .................179
       6.4.1 The SMO ....................................................................179
   6.5 Conclusions ...........................................................................194
   References ..................................................................................195

7. An Ontological Approach to SQL:2003 ........................................197
   7.1 Introduction ...........................................................................197
   7.2 SQL Evolution ......................................................................198
   7.3 The Ontology for SQL:2003 ..................................................201
       7.3.1 The Data Types Sub-ontology .....................................202
       7.3.2 The Schema Objects Sub-ontology ................................204
   7.4 Example .................................................................................209
   7.5 Conclusions ...........................................................................212
   References ..................................................................................214

8. The Object Management Group Ontology Definition
   Metamodel ..................................................................................217
   8.1 Introduction ...........................................................................218
8.2 Why a MOF Ontology Metamodel? ................................................................. 219
  8.2.1 Why a Metamodel? ............................................................................... 219
  8.2.2 Why MOF? .......................................................................................... 220
  8.2.3 Why Not UML? .................................................................................. 221
8.3 The Ontology Development Metamodel ......................................................... 222
  8.3.1 RDF/OWL Metamodel ......................................................................... 224
  8.3.2 Topic Maps .......................................................................................... 228
  8.3.3 Common Logic ..................................................................................... 231
  8.3.4 General Structure of Metamodels ......................................................... 233
8.4 Profiles and Mappings ................................................................................. 235
  8.4.1 The Need for Translation ..................................................................... 235
  8.4.2 UML Profiles ....................................................................................... 236
  8.4.3 Mappings .............................................................................................. 238
  8.4.4 Mapping CL ........................................................................................ 240
  8.4.5 Interaction of Profiles and Mappings .................................................... 241
8.5 Extendibility ................................................................................................. 242
  8.5.1 Metaclass Taxonomy .............................................................................. 242
  8.5.2 Semantic Domain Models ..................................................................... 243
  8.5.3 n-ary associations ................................................................................ 244
8.6 Discussion ..................................................................................................... 244
8.7 Acknowledgments ......................................................................................... 245
References ........................................................................................................... 246

9. Ontologies, Meta-models, and the Model-Driven Paradigm ..................... 249
9.1 Introduction .................................................................................................. 249
9.2 Models and Ontologies ................................................................................ 253
  9.2.1 What’s in a Model? ............................................................................... 253
  9.2.2 What’s in an Ontology? ....................................................................... 255
9.3 Similarity Relations and Meta-modelling .................................................... 257
  9.3.1 Meta-models .......................................................................................... 258
  9.3.2 Metameta-models ................................................................................ 260
  9.3.3 The Meta-pyramid, the Modelling Architecture of MDE .................... 261
9.4 MDE and Ontologies ..................................................................................... 262
  9.4.1 Domain and Upper-Level Ontologies .................................................. 263
  9.4.2 Relationship of Ontologies and System Models on Different
    Meta-levels .................................................................................................... 264
  9.4.3 Employing Domain Ontologies in the MDA ....................................... 265
  9.4.4 Conceptual Benefits of an Ontology-Aware Meta-pyramid .................. 267
  9.4.5 Tools Based on an Ontology-Aware Meta-pyramid ............................... 268
  9.4.6 The mega-Model of Ontology-Aware MDE ....................................... 269
9.5 Related Work ................................................................................................. 270
9.6 Conclusions .................................................................................................... 271